Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(38): 34795-34804, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779961

RESUMEN

In the present work, a procedure based on a dispersive medium for carbon black (CB) isolation from soil samples for analysis was proposed for the first time. Polymeric and biological dispersants and a sequential use of both dispersants were assayed. Asymmetrical flow field flow fractionation with dynamic light scattering detector (AF4-DLS) and sedimentation field flow fractionation with multi-angle light scattering detector (SdF3-MALS) were used for CB quantitation and characterization in the achieved dispersions. Soil samples contaminated with CB were processed, and CB isolation depended on the solid size distribution and composition and dispersant nature. More quantitative isolations were achieved for the four soils treated by the biological dispersant. As the organic matter percentage is higher in soil, the CB isolation was better, varying between 75 and 99% with standard deviation (s) ⩽ 2% for all soils. A soil contaminated with a CB-based pigment paste was analyzed, achieving (99 ± 2)% expressed as expanded uncertainty (K = 2) of dispersive isolation by the biological dispersant, and the sampling was scaled to 250 g of soil with positive results. The procedure was completed by CB recovery to obtain a solid residue able to be reused if necessary. For the filter-aided recovery step, different membranes (fiberglass, nylon, and Teflon) with a pore size between 0.1 and 5 µm were tested. The quantitation of the CB retained in the filter was measured by diffuse reflectance spectroscopy. Teflon (0.10 µm) provided better results for CB recovery, and its re-dispersion was also studied with suitable results. Determination of CB from the filters by diffuse reflectance spectrometry provided the same results than AF4 for CB dispersions.

2.
Nanoscale ; 15(26): 11268-11279, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37345980

RESUMEN

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multi-element determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e.194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics.

3.
Regul Toxicol Pharmacol ; 139: 105360, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36804527

RESUMEN

Over the recent years, EU chemicals legislation, guidance and test guidelines have been developed or adapted for nanomaterials to facilitate safe use of nanomaterials. This paper provides an overview of the information requirements across different EU regulatory areas. For each information requirement, a group of 22 experts identified potential needs for further action to accommodate guidance and test guidelines to nanomaterials. Eleven different needs for action were identified, capturing twenty-two information requirements that are specific to nanomaterials and relevant to multiple regulatory areas. These were further reduced to three overarching issues: 1) resolve issues around nanomaterial dispersion stability and dosing in toxicity testing, in particular for human health endpoints, 2) further develop tests or guidance on degradation and transformation of organic nanomaterials or nanomaterials with organic components, and 3) further develop tests and guidance to measure (a)cellular reactivity of nanomaterials. Efforts towards addressing these issues will result in better fit-for-purpose test methods for (EU) regulatory compliance. Moreover, it secures validity of hazard and risk assessments of nanomaterials. The results of the study accentuate the need for a structural process of identification of information needs and knowledge generation, preferably as part of risk governance and closely connected to technological innovation policy.


Asunto(s)
Seguridad Química , Nanoestructuras , Humanos , Nanoestructuras/toxicidad , Políticas , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
4.
Water Res ; 229: 119385, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446178

RESUMEN

Aquatic fate models and risk assessment require experimental information on the potential of contaminants to interact with riverine suspended particulate matter (SPM). While for dissolved contaminants partition or sorption coefficients are used, the underlying assumption of chemical equilibrium is invalid for particulate contaminants, such as engineered nanomaterials, incidental nanoparticles, micro- or nanoplastics. Their interactions with SPM are governed by physicochemical forces between contaminant-particle and SPM surfaces. The availability of a standard SPM material is thus highly relevant for the development of reproducible test systems to evaluate the fate of particulate contaminants in aquatic systems. Finding suitable SPM analogues, however, is challenging considering the complex composition of natural SPM, which features floc-like structures comprising minerals and organic components from the molecular to the microorganism level. Complex composition comes with a heterogeneity in physicochemical surface properties, that cannot be neglected. We developed a procedure to generate SPM analogue flocs from components selected to represent the most abundant and crucial constituents of natural riverine SPM, and the process-relevant SPM surface characteristics regarding interactions with particulate contaminants. Four components, i.e., illite, hematite, quartz and tryptophan, combined at environmentally realistic mass-ratios, were associated to complex flocs. Flocculation was reproducible regarding floc size and fractal dimension, and multiple tests on floc resilience towards physical impacts (agitation, sedimentation-storage-resuspension, dilution) and hydrochemical changes (pH, electrolytes, dissolved organic matter concentration) confirmed their robustness. These reproducible, ready-to-use SPM analogue flocs will strongly support future research on emerging particulate contaminants.


Asunto(s)
Material Particulado , Contaminantes Químicos del Agua , Material Particulado/análisis , Contaminantes Químicos del Agua/química , Agua Dulce , Minerales , Monitoreo del Ambiente/métodos
5.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234435

RESUMEN

Particulate emissions from vehicle exhaust catalysts are the primary contributors to platinum group elements (PGEs) being released into roadside environments, especially platinum (Pt) particles. With increasing traffic density, it is essential to quantify the emission, accumulation, and potential health effects of traffic-emitted Pt particles. In this study, three procedures were investigated to extract Pt nanoparticles (NPs) from sediments and characterize them by single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS). For this purpose, a reference sediment sample was spiked with manufactured Pt NPs. Pt NPs' extraction recoveries reached from 50% up to 102%, depending on the extraction procedure and whether the particle mass or number was used as the metric. Between 17% and 35% of the Pt NPs were found as unassociated Pt NPs and between 31% and 78% as Pt NPs hetero-aggregated with other sediment particles. Multi-elemental analysis of Pt-containing NPs in the pristine sediment revealed frequently co-occurring elements such as Au, Bi, and Ir, which can be used to determine a natural background baseline. Our results demonstrated that spICP-TOF-MS elemental characterization allows for distinguishing anthropogenic Pt NPs from the natural background. In the future, this could enable the sensitive monitoring of PGE release from anthropogenic sources such as vehicle exhausts.

6.
NanoImpact ; 27: 100410, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35787478

RESUMEN

Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification. Similarity assessment requires an understanding of the achievable accuracy of the available methods. It must be demonstrated that measured differences between NFs are greater than the achievable accuracy of the method, to have confidence that the measured differences are indeed real. To estimate the achievable accuracy of a method, we assess the reproducibility of six analytical techniques routinely used to measure these five basic descriptors of nanoforms: inductively coupled plasma mass spectrometry (ICP-MS), Thermogravimetric analysis (TGA), Electrophoretic light scattering (ELS), Brunauer-Emmett-Teller (BET) specific surface area and transmission and scanning electron microscopy (TEM and SEM). Assessment was performed on representative test materials to evaluate the reproducibility of methods on single NFs of substances. The achievable accuracy was defined as the relative standard deviation of reproducibility (RSDR) for each method. Well established methods such as ICP-MS quantification of metal impurities, BET measurements of specific surface area, TEM and SEM for size and shape and ELS for surface potential and isoelectric point, all performed well, with low RSDR, generally between 5 and 20%, with maximal fold differences usually <1.5 fold between laboratories. Applications of technologies such as TGA for measuring water content and putative organic impurities, additives or surface treatments (through loss on ignition), which have a lower technology readiness level, demonstrated poorer reproducibility, but still within 5-fold differences. The expected achievable accuracy of ICP-MS may be estimated for untested analytes using established relationships between concentration and reproducibility, but this is not yet the case for TGA measurements of loss on ignition or water content. The results here demonstrate an approach to estimate the achievable accuracy of a method that should be employed when interpreting differences between NFs on individual physicochemical properties.


Asunto(s)
Metales , Agua , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Reproducibilidad de los Resultados
7.
Water Res ; 220: 118655, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35665676

RESUMEN

Freshwater suspended particulate matter (SPM) plays an important role in many biogeochemical cycles and serves multiple ecosystem functions. Most SPM is present as complex floc-like aggregate structures composed of various minerals and organic matter from the molecular to the organism level. Flocs provide habitat for microbes and feed for larger organisms. They constitute microbial bioreactors, with prominent roles in carbon and inorganic nutrient cycles, and transport nutrients as well as pollutants, affecting sediments, inundation zones, and the ocean. Composition, structure, size, and concentration of SPM flocs are subject to high spatiotemporal variability. Floc formation processes and compositional or morphological dynamics can be established around three functional components: phyllosilicates, iron oxides/(oxy)hydroxides (FeOx), and microbial extracellular polymeric substances (EPS). These components and their interactions increase heterogeneity in surface properties, enhancing flocculation. Phyllosilicates exhibit intrinsic heterogeneities in surface charge and hydrophobicity. They are preferential substrates for precipitation or attachment of reactive FeOx. FeOx form patchy coatings on minerals, especially on phyllosilicates, which increase surface charge heterogeneities. Both, phyllosilicates and FeOx strongly adsorb natural organic matter (NOM), preferentially certain EPS. EPS comprise various substances with heterogeneous properties that make them a sticky mixture, enhancing flocculation. Microbial metabolism, and thus EPS release, is supported by the high adsorption capacity and favorable nutrient composition of phyllosilicates, and FeOx supply essential Fe.


Asunto(s)
Material Particulado , Eliminación de Residuos Líquidos , Ecosistema , Floculación , Agua Dulce , Minerales , Aguas del Alcantarillado/química
8.
NanoImpact ; 25: 100375, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559881

RESUMEN

Before placing a new nanoform (NF) on the market, its potential adverse effects must be evaluated. This may e.g. be done via hazard and risk assessment. Grouping and read-across of NFs is a possible strategy to reduce resource consumption, maximising the use of existing data for assessment of NFs. The GRACIOUS project provides a framework in which possible grouping and read-across for NFs is mainly based on an evaluation of their similarity. The impact of NFs on human health and the environment depends strongly on the concentration of the NF and its physicochemical properties, such as chemical composition, size distribution, shape, etc. Hence, knowledge of the most relevant physicochemical properties is essential information for comparing similarity. The presented work aims to refine existing proposals for sets of descriptors (descriptor array) that are needed to describe distinct NFs of a material to identify the most relevant ones for grouping and read-across. The selection criteria for refining this descriptor array are explained and demonstrated. Relevant protocols and methods are proposed for each physicochemical property. The required and achievable measurement accuracies of the refined descriptor array are reviewed, as this information is necessary for similarity assessment of NFs based on individual physicochemical properties.


Asunto(s)
Nanoestructuras , Humanos , Nanoestructuras/química , Medición de Riesgo/métodos
9.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458040

RESUMEN

The potential environmental and human health risks from microplastic (1 µm to 1 mm) and nanoplastic (<1 µm) particles (MNPs) is receiving increasing attention from scientists and the public [...]

10.
Environ Sci Technol ; 56(9): 5580-5589, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438975

RESUMEN

The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals. However, its application to study the lability of NOM-Cu required development of a robust separation and detection approach so that free Cu ions can be discriminated from (the also soluble) NOM-Cu. We developed a SID protocol (with enriched 65Cu) to quantify the labile pool of NOM-Cu using size exclusion chromatography coupled to a UV detector (for the identification of different NOM molecular weights) and ICP-MS (for 65Cu/63Cu ratio measurement). The Cu isotopic-exchange technique was first characterized and verified using standard NOM (SR-NOM) before applying the developed technique to an "organic-rich" podzol soil extract. The developed protocol indicated that, in contrast to the common knowledge, significant proportions of SR-NOM-Cu (25%) and soil organic-Cu (55%) were not labile, i.e., permanently locked into inaccessible organic structures. These findings need to be considered in defining Cu interactions with the reactive pool of NOM using geochemical models and risk evaluation protocols in which complexed Cu has always been implicitly assumed to be fully labile and exchangeable with free Cu ions.


Asunto(s)
Contaminantes del Suelo , Humanos , Cobre/química , Isótopos , Metales/análisis , Suelo/química , Contaminantes del Suelo/análisis
11.
Nanomaterials (Basel) ; 12(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35159864

RESUMEN

The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines. According to a survey of surface water hydrochemistry, we propose to use media with low concentrations of Ca2+ and Mg2+ for a better simulation of the ionic background of surface waters, at pH values representing acidic (5 < pH < 6) and near-neutral/alkaline (7 < pH < 8) waters. We evaluated a continuous flow setup adapted to expose small amounts of ENMs to aqueous media, to mimic ENMs in surface waters. For this purpose, silver nanoparticles (Ag NPs) were used as model for soluble metal-bearing ENMs. Ag NPs were deposited onto a 10 kg.mol-1 membrane through the injection of 500 µL of a 5 mg.L-1 or 20 mg.L-1 Ag NP dispersion, in order to expose only a few micrograms of Ag NPs to the aqueous media. The dissolution rate of Ag NPs in 10 mM NaNO3 was more than two times higher for ~2 µg compared with ~8 µg of Ag NPs deposited onto the membrane, emphasizing the importance of evaluating the dissolution of ENMs at low concentrations in order to keep a realistic scenario. Dissolution rates of Ag NPs in artificial waters (2 mM Ca(NO3)2, 0.5 mM MgSO4, 0-5 mM NaHCO3) were also determined, proving the feasibility of the test using environmentally relevant media. In view of the current lack of harmonized methods, this work encourages the standardization of continuous flow dissolution methods toward OECD guidelines focused on natural aquatic environments, for systematic comparisons of nanomaterials and adapted risk assessments.

12.
Heliyon ; 7(11): e08427, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34849422

RESUMEN

Foraminifera are unicellular organisms and play a pivotal role in the marine material cycles. Past observations have shown that the species Elphidium excavatum is the most common foraminifera in the Baltic Sea. Feeding experiments showed that the food uptake and thus the turnover of organic matter are influenced by changes of physical parameters (e.g., temperature, salinity). Since many areas of the Baltic Sea are strongly affected by anthropogenic activity and are strongly contaminated by heavy elements from shipping in the past, this study examined the effect of heavy elements pollution on the food uptake of the most common foraminiferal species of the Baltic Sea, E. excavatum which was a subject of several previous studies. Therefore, Baltic Sea seawater was enriched with metals at various levels above normal seawater levels and the uptake of 13C- and 15N-labelled phytodetritus was measured by isotope ratio mass spectrometry. For each combination of metal type, concentration and time point 20 individuals of E. excavatum (three replicates) were fed with the green algae Dunaliella tertiolecta. The effect of dose parameters was measured in a two-way analysis of variance. Significant differences of food uptake were observable at different types and levels of heavy elements in sea water. Even a 557-fold increase in the Pb concentration did not affect food uptake, whereas strong negative effects were found for higher levels of Zn (144 and 1044-fold) and especially for Cu (5.6 and 24.3-fold). In summary it can be stated, that an increase in the heavy elements pollution in the Kiel Fjord will lead to a significant reduction in the turnover of organic matter by foraminifera such as E. excavatum.

13.
Sci Total Environ ; 801: 149607, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34425449

RESUMEN

A systematic study on the colloidal behavior of uncoated and polyvinylpyrrolidone (PVP) coated TiO2 engineered nanomaterials (ENMs) in simulated aqueous media is herein reported, in which conditions representative for natural waters (pH, presence of divalent electrolytes (i.e. Ca2+/Mg2+ and SO42-), of natural organic matter (NOM) and of suspended particulate matter (SPM)) were systematically varied. The colloidal stability of the different dispersions was investigated by means of Dynamic and Electrophoretic Light Scattering (DLS and ELS) and Centrifugal Separation Analysis (CSA), and a global stability index based on these three techniques was developed. The index allows to quantitatively classify the nano-based dispersions according to their colloidal stability affected by the different parameters studied. This multimethod approach clearly identifies inorganic SPM followed by divalent electrolytes as the main natural components destabilizing TiO2 ENMs upon entering in simulated natural waters, while it highlights a moderate stabilization induced by NOM, depending mainly on pH. Moreover, the PVP coating was found to attenuate the influence of these parameters on the colloidal stability. The obtained results show how the global stability index developed is influenced by the complexity of the system, suggesting the importance of combining the information gathered from all the techniques employed to better elucidate the fate and behavior of ENMs in natural surface waters.


Asunto(s)
Nanoestructuras , Titanio , Electrólitos , Material Particulado
15.
Anal Bioanal Chem ; 413(2): 299-314, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33123761

RESUMEN

The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.


Asunto(s)
Espectrometría de Masas/métodos , Metanol/química , Nanomedicina/métodos , Nanopartículas/química , Plantas/metabolismo , Agua/química , Cobre/química , Oro/química , Nanopartículas del Metal/química , Metanol/análisis , Tamaño de la Partícula , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Solubilidad , Titanio/química , Óxido de Zinc/química
16.
Environ Sci Process Impacts ; 22(9): 1888-1897, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32803213

RESUMEN

Dissolved organic matter (DOM) is ubiquitous in aquatic environments where it interacts with a variety of particles including carbonaceous materials (CMs). The complexity of both DOM and the CMs makes DOM-CM interactions difficult to predict. In this study we have identified the preferential sorption of specific DOM fractions as being dependent on their aromaticity and molecular weight, as well as on the surface properties of the CMs. This was achieved by conducting sorption batch experiments with three types of DOM (humic acid, Suwannee River natural organic matter, and a compost extract) and three types of CMs (graphite, carbon nanotubes, and biochar) with different geometries and surface complexities. The non-adsorbed DOM fraction was analyzed by size exclusion chromatography and preferentially sorbed molecular weight fractions were analyzed by UV/vis and fluorescence spectroscopy. All three sorbent types were found to preferentially sorb aromatic DOM fractions, but DOM fractionation depended on the particular combination of sorbent and sorbate characteristics. Single-walled carbon nanotubes only sorbed the smaller molecular weight fractions (<1 kDa). The sorption of smaller DOM fractions was not accompanied by a preference for less aromatic compounds, contrary to what was suggested in previous studies. While graphite preferentially sorbed the most aromatic DOM fraction (1-3 kDa), the structural heterogeneity of biochar resulted in reduced selectivity, sorbing all DOM > 1 kDa. The results explain the lack of correlation found in previous studies between the amount of aromatic carbon in a bulk DOM and its sorption coefficient. DOM sorption by CMs was generally controlled by DOM aromaticity but complex sorbent surfaces with high porosity, curvatures and functional groups strongly reduced the importance of aromaticity.


Asunto(s)
Nanotubos de Carbono , Adsorción , Sustancias Húmicas , Peso Molecular , Compuestos Orgánicos
17.
Nat Nanotechnol ; 15(9): 731-742, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807878

RESUMEN

Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals. Here we present the developing knowledge, practical considerations and key principles need to support exposure assessment for engineered nanomaterials for regulatory and research applications.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Nanoestructuras/química , Nanoestructuras/toxicidad , Nanotecnología/métodos , Medición de Riesgo/métodos , Disponibilidad Biológica , Exposición a Riesgos Ambientales/prevención & control , Humanos , Termodinámica
18.
Nat Nanotechnol ; 14(3): 208-216, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30837754

RESUMEN

The European Union (EU) has adopted nano-specific provisions for cosmetics, food and biocides, among others, which include binding definitions of the term "nanomaterial". Here we take an interdisciplinary approach to analyse the respective definitions from a legal and practical perspective. Our assessment reveals that the definitions contain several ill-defined terms such as "insoluble" or "characteristic properties" and/or are missing thresholds. Furthermore, the definitions pose major and so far unsolved analytical challenges that, in practice, make it nearly impossible to classify nanomaterials according to EU regulatory requirements. An important purpose of the regulations, the protection of human health and the environment, may remain unfulfilled and the development of innovative applications of nanomaterials may be facing a path full of (legal) uncertainties. Based on our findings, we provide five recommendations for a more coherent and practical approach towards the regulation of nanomaterials.


Asunto(s)
Nanoestructuras/clasificación , Control Social Formal , Tamaño de la Partícula , Solubilidad
19.
Nanoscale ; 10(46): 21960-21970, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30444228

RESUMEN

Titanium dioxide (TiO2) based nanomaterials (NMs) are among the most produced NMs worldwide. When irradiated with light, particularly UV, TiO2 is photoactive, a property that is explored for several purposes. There are an increasing number of reports on the negative effects of photoactivated TiO2 on non-target organisms. We have here studied the effect of a suite of reference type TiO2 NMs (i.e. NM103, NM104, and NM105 and compared these to the bulk) with and without UV radiation to the oligochaete Enchytraeus crypticus. High-throughput gene expression was used to assess the molecular mechanisms, while also anchoring it to the known effects at the organism level (i.e., reproduction). Results showed that the photoactivity of TiO2 (UV exposed) played a major role in enhancing TiO2 toxicity, activating the transcription of oxidative stress, lysosome damage and apoptosis mechanisms. For non-UV activated TiO2, where toxicity at the organism level (reproduction) was lower, results showed potential for long-term effects (i.e., mutagenic and epigenetic). NM specific mechanisms were identified: NM103 affected transcription and translation, NM104_UV negatively affected the reproductive system/organs, and NM105_UV activated superoxide anion response. Results provided mechanistic information on UV-related phototoxicity of TiO2 materials and evidence for the potential long-term effects.


Asunto(s)
Nanopartículas del Metal/química , Oligoquetos/genética , Titanio/química , Animales , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Nanopartículas del Metal/toxicidad , Oligoquetos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Superóxidos/metabolismo , Rayos Ultravioleta
20.
Environ Sci Technol ; 52(3): 1128-1138, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29373787

RESUMEN

Here we compare the standard European benchmark of wood treatment by molecularly dissolved copper amine (Cu-amine), also referred to as aqueous copper amine (ACA), against two nanoenabled formulations: copper(II)oxide nanoparticles (CuO NPs) in an acrylic paint to concentrate Cu as a barrier on the wood surface, and a suspension of micronized basic copper carbonate (CuCO3·Cu(OH)2) for wood pressure treatment. After characterizing the properties of the (nano)materials and their formulations, we assessed their effects in vitro against three fungal species: Coniophora puteana, Gloeophyllum trabeum, and Trametes versicolor, finding them to be mediated only partially by ionic transformation. To assess the use phase, we quantify both release rate and form. Cu leaching rates for the two types of impregnated wood (conventional and nanoenabled) are not significantly different at 172 ± 6 mg/m2, with Cu being released predominantly in ionic form. Various simulations of outdoor aging with release sampling by runoff, during condensation, by different levels of mechanical shear, all resulted in comparable form and rate of release from the nanoenabled or the molecular impregnated woods. Because of dissolving transformations, the nanoenabled impregnation does not introduce additional concern over and above that associated with the traditional impregnation. In contrast, Cu released from wood coated with the CuO acrylate contained particles, but the rate was at least 100-fold lower. In the same ranking, the effectiveness to protect against the wood-decaying basidiomycete Coniophora puteana was significant with both impregnation technologies but remained insignificant for untreated wood and wood coated by the acrylic CuO. Accordingly, a lifecycle-based sustainability analysis indicates that the CuO acrylic coating is less sustainable than the technological alternatives, and should not be developed into a commercial product.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Antifúngicos , Cobre , Trametes , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...